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Abstract

The liquid film flow down an oscillating plate was used as a suitable flow configuration to study the dynamic
behaviour of electrodiffusion friction probes at large fluctuations. The two-segment probe was flush mounted into
the plate wall to measure the fluctuating wall shear rate. The hydrodynamics of the experiment made it possible to
adjust both the steady and oscillatory component of the wall shear rate through the operation parameters (flow rate,
plate inclination, amplitude and frequency of wall oscillations). The approximate model of the probe dynamic
response based on the similarity of concentration profiles at the probe surface was verified. This simple model
proved to be able to calculate the instantaneous wall shear rate from the measured current signal even at large flow
fluctuations. The analysis of the probe dynamic behaviour under reversing flow conditions provided a new method
of the detection of short-time flow reversal. Finally, this method was successfully applied to confirm the existence of
a small backflow region located in front of the large solitary waves, which were excited on the surface of a liquid film
flowing down an inclined stationary plate.

List of symbols

a amplitude of the plate oscillations (m)
AED amplitude attenuation of the electrodiffusion signal (Equation 9)
AHD amplitude attenuation of the wall shear rate signal (Equation 13)
AR ratio of the signal amplitudes ¼ ðeIIR=IRÞ=ðe_cc_cc=�_cc_ccÞ
c wave velocity (m s)1)
c0 concentration of the active ions (kmol m)3)
D diffusion coefficient (m2 s)1)
Ds diffusion coefficient determined from the measured value of ks (Equation 5) (m

2 s)1)
Dt diffusion coefficient determined from the measured value of kt (Equation 6) (m

2 s)1)
f frequency (Hz)
fP frequency of the flow rate pulsations (Hz)
F faradaic constant (9.648 · 107 C kmol)1)
g gravitational acceleration (9.81 m s)2)
gi thickness of the insulating gap (m)
h film thickness (m)
H �
ED transfer function of the probe current response to the wall shear rate modulation

H0 quasisteady response of the electrodiffusion probe ¼ �II=ð3�_cc_ccÞ (A s)
I probe current (A)
I1 current from the front probe segment (A)
I2 current from the rear probe segment (A)
IR current ratio ¼ I2/I1
l length of the probe strip in the mean flow direction (m)
ks steady flow calibration constant of the probe (A s1/3)
kt dynamic calibration constant of the probe (A s1/2)
Q volumetric flow rate per unit span of the plate (m2 s)1)
Re Reynolds number ¼ Q/m
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St Stokes number ¼ h(x/m)1/2

t time (s)
t0 characteristic time of the electrodiffusion probe (Equation 7) (s)
w width of the probe strip (m)
x distance of the oscillating plate from the displacement transducer (m)
X axial distance from the liquid distributor (m)
z number of electrons involved in the redox reaction

Greek symbols
a inclination angle of the plate (deg)
_cc wall shear rate (s)1)
FED phase shift of the electrodiffusion signal in respect to the wall shear rate (Equation 10)
FHD phase shift of the wall shear rate in respect to the wall oscillations (Equation 11)
k wave length (m)
m kinematic viscosity (m2 s)1)
q density (kg m)3)
x angular frequency ¼ 2pf (rad s)1)
W dimensionless frequency ¼ xt0
W1 dimensionless frequency calculated for the front probe segment ¼ xðkt=I1Þ2

Superscripts
– time-average value
� amplitude of the fluctuating signal

1. Introduction

The electrodiffusion technique using probes flush moun-
ted into a wall is often used to measure local values of the
wall shear rate [1, 2]. The probe active surface works as a
small electrode where a fast electrochemical reaction
takes place. The measured limiting current is controlled
by convective diffusion and the well-known Léveque
formula can be applied to determine the wall shear rate.
The main advantage of this technique is that the wall
probes provide information about the flow in the near
wall region without any disturbances imposed on the
studied velocity field. On the other hand, to interpret the
results of measurements performed under unsteady flow
condition, the dynamic response of the concentration
boundary layer near the probe surface to the flow
fluctuations has to be considered.
If relatively small fluctuations of the wall shear rate

are assumed, the equation of unsteady mass transport
can be solved with the aim of obtaining the transfer
function of the probe response [3–5]. This prediction
was confirmed by experiments performed in the modu-
lated flow configuration of a rotating disc [6]. The
transfer function is used to calculate the amplitude
attenuation and the phase shift of the measured current
signal in respect to the imposed wall shear rate variation
of a given frequency. It also makes it possible to correct
the power spectra obtained from the measurements of
near-wall turbulence.
The probe dynamic response in large amplitude

unsteady flows has been much less investigated [7, 8].
It was shown that the distortion of the measured signal

in respect to the quasi-steady one becomes stronger as
the amplitude of imposed fluctuations increases. The
amplitude attenuation and the phase shift are especially
significant in the region around the wall shear rate
minimum where convection is small and the probe
inertia becomes significant.
The inverse problem of calculating the instantaneous

wall shear rate from the measured current signal has to
be solved to acquire the near-wall flow variation in a
whole time domain. The numerical approach to the
inverse problem solution [9] suggests the procedure that
is too complicated from a practical point of view. An
approximate model of the wall probe dynamics [10, 11]
seems to be more useful for experimental data treat-
ment. This simple model is based on the assumption of
similarity in the concentration fields established near the
probe surface under steady and unsteady flow condi-
tions. It is capable to provide a satisfactory dynamic
correction of the measured signal even for quite large
amplitudes of the flow modulation [12].
The single wall probe is applicable only under

nonreversing flow conditions. If flow reversal occurs in
the near-wall flow region and additional information
about the flow direction is needed, the two-segment
probe [13, 14] is usually applied. This ‘sandwich probe’
consists of two active segments separated in the mean
flow direction by a thin insulating gap. If the studied
reversing flow exhibits a steady recirculation zone, as in
backward-facing step flow [15] and in flow around a
cylinder [16], or if local changes of the flow direction are
relatively slow, as in the liquid film flow driven by air
blowing [17], the experimental detection of the flow
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reversal is easy. In these cases the direction of the flow is
detected by a simple comparison of the magnitudes of
current signals flowing through the front and rear probe
segment. The correct interpretation of signals measured
by a two-segment probe under highly unsteady flow
conditions is more complicated due to the necessity to
consider different dynamic behaviour of individual
segments of the probe.
Wavy film flow down an inclined plane is a typical

representative of unsteady flows. The spatio-temporal
evolution of waves on the film surface is a complex
process and the different kinds of waves can be
observed. Small-amplitude waves appearing at the wave
inception grow rapidly and develop downstream into the
large nonlinear patterns of finite-amplitude, solitary or
three-dimensional waves [18]. The large solitary waves
(sometimes called ‘rolling waves’) are separated by wide
regions of the thin liquid film and have a typical shape
characterized by a steep front and a gradual tail. Small
capillary waves are usually pushed in front of these
solitary waves. This region is not easy accessible for
the experimental investigation, because rapid flow
changes observed there take place inside the thin
liquid film. The recent numerical simulation of wavy
film flow [19] has suggested that there is possibly a small
backflow region in front of the large solitary waves. It
has been a challenge for us to confirm or reject such a
surprising finding by the relevant electrodiffusion expe-
riments.
The main purpose of this paper is to suggest a new

method of performing dynamic calibrations of two-strip
electrodiffusion probes and subsequent treatment of
data obtained by such a probe under highly unsteady
flow conditions. The results of our calibration experi-
ments carried out under oscillating film flow conditions
show that the two-strip probe is able to detect the near-
wall flow reversal even if its duration is relatively short.
The results of wavy film flow investigation then demon-
strate that this probe can provide valuable information
about the near-wall flow. In this test case, the wall shear
rate measurements confirm the existence of a small
backflow region located just in front of a large solitary
wave travelling down the liquid film.

2. Dynamic response of the electrodiffusion friction probes

Only if the flow fluctuations are slow enough, can the
limiting diffusion current I(t) be directly related to the
instantaneous value of the wall shear rate _ccðtÞ. For a
single strip probe this quasisteady relation can be
expressed in the following well-known form:

IðtÞ ¼ 0:807 zFc0wl2=3D2=3 _cc1=3ðtÞ ð1Þ

where z, F, l, w, c0 and D have the meanings described at
the outset. For proper use of electrodiffusion probes
under unsteady flow conditions, it is necessary to
consider their dynamic response. The approximate

model [11] suggested for description of the probe
dynamic behaviour is represented by the simple formula

_cc ¼ k�3s I3 þ 2k2t
dI
dt

� �
ð2Þ

This semi-empirical differential equation contains two
constants, easily accessible from the steady flow cali-
brations. The first constant ks corresponds to the steady
state solution

I ¼ ks _cc1=3 ð3Þ

and the second one kt can be determined from the
known solution of the unsteady diffusion at the begin-
ning of the transient process after the probe polarization
switch-on

I ¼ ktt�1=2 ð4Þ

If the exact shape of a probe and the diffusivity of ions
involved in the electrode reaction are known, both the
constants can also be calculated from the theoretical
relationships. For a single strip probe

ks ¼ 0:807 zFc0wl2=3D2=3 ð5Þ

and

kt ¼ zFc0wl
ffiffiffiffiffiffiffiffiffi
D=p

p
ð6Þ

To estimate the single probe inertia at given flow
conditions characterized by the value of �_cc_cc, the charac-
teristic time parameter t0 can be introduced as

t0 ¼ ðkt=IÞ2 ¼ ðkt=ksÞ2�_cc_cc�2=3 ð7Þ

This parameter is determined as the time coordinate of
the intersection of both the asymptotes (Equations 3 and
4) of the transient current response after the probe
polarization switch-on. The dependence of this charac-
teristic time on the actual flow conditions represented by
the mean value of wall shear rate is an important
consequence of nonlinear dynamic behaviour of the
electrodiffusion probes.
We can also consider the electrodiffusion probe as a

dynamic system, where the input is a harmonically
superposed wall shear rate and the output is a current
response of the probe. Following the linear theory of
small-amplitude fluctuations, the transfer function of
the probe current response to the wall shear rate
modulation, H �

EDðXÞ, can be obtained. This complex
function of the frequency can be represented by the pair
of real-value functions: the amplitude attenuation
AED(W) and phase shift FED(W). The approximate
model (Equation 2) provides the differential equation
that leads to the frequency response function
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H�
ED ¼ H0AED expð�iUEDÞ ¼

I=�_cc_cc
3þ i2X ð8Þ

where the dimensionless frequency W ¼ xt0 is based on
the probe characteristic time t0 and H0 ¼ �II=ð3�_cc_ccÞ is a
quasisteady impedance valid for W fi 0. It is clearly seen
in Figure 1 that the simple formulas for the amplitude
attenuation

AED ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

9X
2

q ð9Þ

and for the phase shift

UED ¼ arctan 2

3
X

� �
ð10Þ

predicted by the approximate model agree well with the
exact results obtained for a single strip probe from the
numerical solution [5].
Let us consider now the probe with two parallel strips

of the same length separated in the flow direction by a
thin insulating gap. Assuming that the insulating gap
between the segments is infinitesimally thin, the dynamic
response of the rear (downstream) segment can be

determined as the difference between the current re-
sponses of ‘the overall probe’ (strip of the length of 2l)
and the front (upstream) segment (strip of the length of
l). Consequently the numerical results [5] obtained for a
single probe can be also used to estimate dynamic
behaviour of the individual segments of the two-strip
probe. The dynamic responses calculated for the overall
probe and for the individual probe segments are pre-
sented in Figure 2. The dynamic response of the front
segment is qualitatively same as that of the overall probe
and both the responses would be identical if comparison
is based on W (same dimensionless frequency) instead of
W1 (same flow conditions) used in Figure 2. Due to the
absence of sensitive leading edge, the response of rear
segment is similar to the local response observed at a
certain distance from the leading edge [4]. This is reason
why both the segments exhibit different asymptotic
behaviour at high frequencies: the amplitude attenuation
is proportional either to X�1

1 (front segment, single probe
asymptote) or to X�3=2

1 (rear segment, local asymptote)
and the corresponding asymptotic phase shift is
FED ¼ 90� or 135�, respectively.
The two-strip probe should evidently provide more

complex information about the studied flow. However,
the question is how can this information be interpreted.

Fig. 1. Frequency response of a single electrodiffusion probe: (a) amplitude attenuation, (b) phase shift. Approximate solution (Equations 9 and

10, lines) is compared with the exact results for a strip probe (symbols).

Fig. 2. Frequency response of a two-strip probe: (a) amplitude attenuation, (b) phase shift. Numerically calculated responses of the front (thick

line) and rear (dashed line) strip are compared with that of the overall probe (thin line).
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A promising approach is to analyse the dynamic
response of certain combinations of the current signals
provided by the probe segments. It was demonstrated by
Py [20] that this approach could improve the frequency
response of the probe. Below, in the experimental part
of this work, our attention will be focused on dynamic
behaviour of the current ratio signal, IR ¼ I2/I1. It will
be shown how this signal should be treated to obtain
information on the amplitude of large wall shear rate
fluctuations.

3. Description of the experiments

3.1. Model fluids and electrochemical system

Water, two aqueous solutions of glycerine (30% and
50% by weight), and two aqueous solutions of polyal-
kylene glycol EmkaroxHV40 (6% and 10% by weight)
were chosen as the model liquids. A suitable electro-
chemical system was provided by the addition of 0.025 M
equimolar potassium ferro/ferricyanide and 0.05 M
potassium sulfate. The resulting solutions differed sig-
nificantly in the value of diffusivity of ferricyanide ions
(see Table 1 below). The versatile two-segment probe
was manufactured from two platinum foils that were
glued into a stainless steel tube. The front profiles of
platinum foils acted as two parallel strip cathodes and
the tube served as a counterelectrode. Both probe strip
segments had the same size (l ¼ 0.1 mm andw ¼ 1 mm).
The strip with longer side w was always oriented
perpendicularly to the flow direction. The thickness of
the insulating gap gi between the two strip segments was
about 0.01 mm. A polarization voltage of )0.8 V was
applied to assure that the probe was working under
limiting diffusion current conditions. A home built
electrodiffusion analyser set the polarization voltage to
the probe, converted currents flowing through the
individual segments into voltages and amplified the
resulting signals. A PC provided with an A/D and D/A
card controlled this analyser.

3.2. Experimental outline

Three types of experiments were performed in successive
steps:
(a) Probe calibration under steady flow conditions of

the viscometric flow between two coaxial cylinders
(see Sections 3.3 and 4.1):

i(i) dependence of the limiting diffusion current on
the wall shear rate provides ks,

(ii) transient current response after switch on of the
probe potential provides kt.

(b) Probe calibration under pulsatile flow conditions of
the non-wavy film flow down an oscillating plate
(see Sections 3.4 and 4.2):
ii(i) verification of the approximate model of the

probe dynamic behaviour,
i(ii) experimental determination of the frequency

response function for the two-strip probe,
(iii) analysis of the current ratio signal IR aimed to

the detection of unsteady flow reversal.
(c) Wall shear rate measurements in the wavy film flow
artificially excited by the inlet flow rate pulsations
(see Sections 3.5 and 4.3).

3.3. Calibrations under steady flow conditions

The probe was calibrated in a special device involving
two coaxial cylinders (Figure 3). It was inserted into the
outer cylinder wall and the solution filled the gap
between the cylinders. The inner cylinder rotation
provided laminar Couette flow conditions in the device.
The rotation speed was changed to provide wall shear
rates ranging from 20 s)1 to 400 s)1. The corresponding
limiting diffusion currents flowing through the probe
segments were measured to determine the calibration
constants ks and kt for each model liquid.

3.4. Calibrations done under fluctuating flow conditions

The probe calibrations under fluctuating flow conditions
were performed in the experimental set-up shown in
Figure 4. The liquid film was produced on a smooth
stainless steel plate (0.8 m in length and 0.15 m in

Table 1. Viscosity, density, diffusivity, and calibration constants of the model liquids

Liquid Water Emkarox 6% Emkarox 10% Glycerin 30% Glycerin 50%

m · 106/m2 s)1 1.0 6.1 12.4 2.5 6.0

q/kg m)3 1000 1032 1035 1076 1136

kt/lA s
1/2 4.35 3.41 3.10 2.50 1.72

ks/lA s
1/3 4.06 2.85 2.60 1.82 1.12

Dt/m
2 s)1 7.96 · 10)10 4.89 · 10)10 4.04 · 10)10 2.63 · 10)10 1.24 · 10)10

Ds/m
2 s)1 8.28 · 10)10 4.62 · 10)10 4.25 · 10)10 2.49 · 10)10 1.20 · 10)10

Fig. 3. Experimental set-up for steady flow calibrations of the wall

probes.
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width). The plate slope could be changed from the
vertical to the horizontal position. An electromagnetic
vibrator was used to impose oscillations parallel to the
film flow direction on the plate. The frequency of these
oscillations was changed in the range of f from 0 to
50 Hz and their amplitude was adjusted up to the
maximal value of a ¼ 3 mm. Three types of signal were
measured: the film thickness h(t) (by a capacitance probe
[11]), the limiting diffusion current I(t) (by an electro-
diffusion probe), and the axial position of the plate x(t)
(by a displacement transducer).
If the laminar, non-wavy liquid film is flowing down

an oscillating wall, the time course of wall shear rate can
be expressed as

_ccðtÞ ¼ �_cc_cc þ e_cc_cc sin xt þ UHDð Þ ð11Þ

The time-average component of wall shear rate �_cc_cc is
dependent on three hydrodynamic parameters (kine-
matic viscosity m, liquid film thickness h, and plate
inclination angle a):

�_cc_cc ¼ g sin a
h
m

ð12Þ

The amplitude of wall shear rate fluctuations e_cc_cc is
controlled by two parameters of the plate oscillations
(their angular frequency x and amplitude a):

e_cc_cc ¼ AHDax2
h
m

ð13Þ

The hydrodynamic response of the fluctuating wall
shear rate to the wall oscillation motion is represented
by two functions of the Stokes number (St ¼ hðx=mÞ1=2):
the hydrodynamic phase shift FHD(St) and amplitude

attenuation AHD(St). The actual values of these func-
tions, which range between FHD ¼ 90�, AHD ¼ 1 (low-
frequency limit, for St fi 0) and FHD ¼ 135�, AHD ¼ 0
(high-frequency limit, for St fi 1), can be found
together with a detailed analysis of the oscillating film
flow in [21].

3.5. Wavy film flow experiments

The experimental investigation of the wavy film flow
was carried out in an experimental set-up similar to that
shown in Figure 4. The liquid film flowed down a long
stationary plate (2 m in length and 0.22 m in width).
This stainless steel plate was fixed at a constant
inclination angle a ¼ 6.5�. A piston mounted into the
air chamber produced periodical pulsations of the flow
rate with a small amplitude (up to 10% of the mean flow
rate) and low frequency (from 0.5 to 2.5 Hz). These low-
frequency pulsations excited regular solitary waves on
the liquid film surface. The two-strip electrodiffusion
probe was mounted into the wall to detect the wall shear
rate under large solitary waves. The capacitance probe,
installed at the same distance from the liquid distributor
(X ¼ 1.5 m) as the electrodiffusion one, simultaneously
measured the instantaneous film thickness. These mea-
surements were carried out with water as the model
liquid.

4. Results and discussion

4.1. Steady flow calibrations of the two-segment
electrodiffusion probe

These measurements provided the probe calibration
constants for the different model liquids. The pairs of
constants (ks and kt), obtained for the front probe
segment, are presented, together with the physical
properties of the model liquids, in Table 1.
As under steady flow conditions the polarization of

the rear probe segment does not affect the concentration
boundary layer established at the front probe segment,
this front segment works in a similar way as a single
probe. By contrast the rear segment is in the concentra-
tion shade of the front one and it gives the lower current
signal. For the steady wall shear rate the ratio of both
the measured current signals has a constant value
IR ¼ I2/I1, which is dependent only on the relative
thickness of the insulating gap gi=l. The experimental
value of IR ¼ 0.663 ± 0.007 obtained for our probe
geometry (gi=l ’ 0:1) was close to that of IR ¼ 0.645
predicted for this geometry by the theoretical analysis
[22].
Both asymptotes of the transient process after polari-

zation switch-on, obtained for t fi 0 (Equation 4) and
for t 
 t0 (Equation 3), respectively, are schematically
shown in Figure 5. This Figure also demonstrates the
physical meaning of the probe characteristic time t0. For
a probe of given shape, the magnitudes of both

air box

receiver

storage vessel

thermostat
capacitance
probe of film

thickness

narrow-gap
distributor

vibrator

sensor of axial position

x=x(t)

I=I(t)

h=h(t)

electrodiffusion
friction probe

screw pump

computer

Fig. 4. Experimental set-up for dynamic calibrations of the wall

probes.
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calibration constants are sensitive only to the diffusivity
of active ferricyanide ions in the solution. The diffusion
coefficient diminution renders the probe characteristic
time longer and the probe dynamic response slower. As
seen in Table 1 the diffusion coefficients Ds and Dt,
which were calculated from the experimental values of ks
and kt by using Equations 5 and 6, are in good
agreement for all the model solutions.

4.2. Dynamic behaviour of the probe under fluctuating
flow conditions

The time traces of fluctuating wall shear rate measured
by the two-strip probe at three different operating
conditions are shown in Figure 6. The thick lines denote
the correct courses of wall shear rate calculated for the
film flow conditions according to Equation 11. The thin
lines correspond to the quasisteady interpretation of the
current signal measured by the front probe segment,
ðI1ðtÞ=ksÞ3. Due to the probe inertia, this quasisteady
signal exhibits a certain amplitude attenuation and a
phase shift in respect to the correct one. The circle
symbols represent the corrected electrodiffusion data
obtained by the application of the simple approximate
model (Equation 2). The correction formula works well
even when the amplitude of the flow fluctuations is
relatively high (Figure 6(a)). Significant deviations be-
tween the actual and measured value of the wall shear
rate are observed, only if flow reversal conditions are
approached, e_cc_cc=�_cc_cc ’ 1 (Figure 6(b)). These deviations are
apparent mainly in the region of low wall shear rates.
The corrected signal underestimates the minimum value
(about 20% in Figure 6(b)), but the signal maximum is
still determined quite well. When the flow conditions
corresponding to the strong flow reversal are adjusted,
the electrodiffusion signal distortion is more pronounced
(Figure 6(c)). However, the slightly negative minimum
values of the wall shear rate provided by the approximate
model serves as evidence of the flow reversal.

The normalized current signals provided by the two-
strip probe are compared in Figure 7. Due to the
different dynamic behaviour of the probe segments, the
measured signals differ in their amplitudes and phase
shifts. Consequently, the current ratio signal, IR(t) ¼ I2/
I1, has a fluctuating character with an amplitude which
is sensitive to the magnitude of the wall shear rate
fluctuations.
All data on the frequency response of the probe

segments obtained under relatively small flow fluctua-
tions (for e_cc_cc=�_cc_cc < 0:25) are presented in Figure 8. The
amplitude attenuations and the phase shifts measured
for the front probe segment (solid symbols) follow the
numerical predictions (solid lines) very well, whereas the
same data obtained for the rear probe segment (open
symbols) follow these predictions (dashed lines) only if
the non-dimensional frequency of wall shear rate fluc-
tuations is low. In this case the effect of the insulating
gap, which is neglected in the numerical calculation, is

Fig. 5. Asymptotes of current responses on the probe polarization

switch-on obtained for the front probe segment at �_cc_ccðtÞ ¼ 100 s)1.

.

.

.

.

Fig. 6. Time courses of fluctuating wall shear rate measured for

Emkarox 10%. Correct course of wall shear rate (Equation 11, thick

lines), the quasisteady electrodiffusion signal (Equation 1, thin lines),

and the corrected electrodiffusion data (Equation 2, circles) obtained

under oscillating film flow conditions: (a) f ¼ 15 Hz, h ¼ 0.58 mm,
a ¼ 0.4 mm, �_cc_ccðtÞ ¼ 175 s)1, e_cc_cc=�_cc_cc ¼ 0:50, W ¼ 3.7; (b) f ¼ 15 Hz,
h ¼ 0.58 mm, a ¼ 0.8 mm, �_cc_ccðtÞ ¼ 175 s)1, e_cc_cc=�_cc_cc ¼ 1:02, W ¼ 3.7; (c)
f ¼ 25 Hz, h ¼ 1.09 mm, a ¼ 0.6 mm, �_cc_ccðtÞ ¼ 146 s)1, e_cc_cc=�_cc_cc ¼ 2:17,
W ¼ 8.3.
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not significant. When the non-dimensional frequency
reaches the value of X1 ’ 1:5, the dynamic behaviour of
the rear segment suddenly changes due to a secondary
edge effect, which takes place just behind the insulating
gap. After reaching its maximum value of FED � 100�,
the phase shift of the rear segment signal falls rapidly to
a local minimum of FED � 25� at W1 ’ 2.5. For higher
frequencies (W1 > 2) the rear segment signal exhibits
even less significant phase shift than the front one and,
under the same conditions, the amplitude attenuation
measured for this signal is not so pronounced as that
predicted by the numerical calculation. An additional
theoretical analysis, which would include the influence
of the insulating gap on the probe dynamics, is needed
to explain the observed frequency response of the rear
segment.
The amplitude of current ratio fluctuations was found

to be proportional to the imposed amplitude of wall
shear rate fluctuations. This dependence is shown in
Figure 9, where measurements done at three frequencies
of the fluctuating wall shear rate are compared. The
relation between the relative amplitudes of the imposed
input signal (e_cc_cc=�_cc_cc) and measured output signal (eIIR=�IIR)
remains practically linear, even when flow reversal is
reached. If the frequency of the imposed wall shear rate
fluctuations is increased, the amplitude attenuation of
the measured current signals becomes more pronounced
and thus the slope of the lines shown in Figure 9
decreases.
After putting all the measured data together into

Figure 10, it was found that the ratio of the relative
amplitudes, AR � ðeIIR=IRÞ=ðe_cc_cc=�_cc_cc), is dependent only on
the dimensionless frequency X1 � xðkt=�II1Þ2. The fol-
lowing power dependence fits all the data obtained for
dimensionless frequencies W1>2
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Fig. 9. Growth of relative amplitude of current ratio signal due to

enhancement of wall shear rate fluctuations observed for the oscillating

liquid film flow of Emkarox 10% (h ¼ 0.58 mm, �_cc_cc ¼ 175 s)1). Para-
meters of oscillations: f ¼ 10 Hz, a ¼ 0.3 ‚ 1.4 mm (squares),

f ¼ 15 Hz, a ¼ 0.2 ‚ 1.4 mm (circles), and f ¼ 20 Hz, a ¼ 0.15 ‚
0.8 mm (triangles).
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AR ¼ 0:565X�3=2
1 ð14Þ

The simple relation eIIR=IR > 0:565X�3=2
1 (valid only fore_cc_cc=�_cc_cc > 1) can be then used as a criterion for detection of

the unsteady flow reversal directly from the measured
current signals. This signal processing method, which is
able to detect even a short-time flow reversal, will be
demonstrated in the following section.

4.3. Wall shear rate under large solitary waves

The typical time courses of the film thickness and the
wall shear rate obtained for the solitary wave regime are
shown in Figure 11. This regime of regular waves was
excited by low-frequency pulsations (fP ¼ 1.8 Hz) of the
inlet flow rate of water (Q ¼ 0.000 091 m2 s)1 and
Re ¼ 91). The presented signals, which were simulta-
neously recorded by the capacitance and electrodiffusion
probe at the downstream measurement location
(X ¼ 1.5 m), are normalized by their time-average

values. The solitary wave crests reach a value almost
two times higher than that of the mean film thickness
and the peak-to-peak distance between them is long
(c=fP ¼ 152 mm). The short capillary waves (k � 5 mm
and f � 53 Hz) are not so clearly seen on the film
surface profile, because the signal from the capacitance
probe underestimates their amplitudes. This is caused by
the averaging effect of the cylindrical probe of diameter
3 mm. The wall shear rate profile, obtained after
application of the correction formula (Equation 2) to
measured electrodiffusion data, exhibits the same char-
acteristic features as that obtained from the numerical
simulation [19]. Strong fluctuations of the wall shear
rate are apparent in the region of capillary waves. Then
steep increasing of the wall shear rate is observed, with
the maximum value located just in front of the large
wave crest. Finally, gradual relaxation of the wall shear
rate takes place in the wave trail region. The most
interesting feature is the existence of a small backflow
region characterized by negative values of the wall shear
rate. The flow in front of the solitary wave is highly
unsteady and this is why the observed near-wall flow
reversal takes only a few microseconds.
Two possible approaches to the identification of this

near-wall flow reversal from measured electrodiffusion
data are presented in Figure 12, where the wall shear
rate modulation in front of the large solitary wave is
shown in detail. The first approach, based on the signal
correction according to the approximate model of probe
dynamics, is demonstrated in Figure 12(a). It is clearly
seen that the signal correction in respect to the probe
dynamics is really important, because rapid flow chan-
ges in the near-wall region bring about strong fluctua-
tions of the current measured by the front probe
segment. The negative values of wall shear rate, appa-
rent after signal correction ( _ccmin ¼ �375 s)1 for data
from Figure 12(a)), suggest that there is indeed a
backflow region in the liquid film. As the approximate
model underestimates, under reverse flow conditions,
the minimum values of wall shear rate, the backflow in
this small region will probably be even stronger.

Fig. 10. Dependence of the amplitude ratio AR on the dimensionless

frequency of wall shear rate fluctuations W1.

Fig. 11. Time courses of film thickness and wall shear rate typical for the solitary wave regime. Data measured for the film flow of water at

fP ¼ 1.8 Hz, Re ¼ 91, a ¼ 6.5�, X ¼ 1.5 m, c ¼ 0.28 m s)1, �_cc_cc ¼ 635 s)1.
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The second approach to flow reversal detection, which
is demonstrated in Figure 12(b), analyses the fluctuating
current ratio signal. Assuming that the proportional
relation between the wall shear rate and the current ratio
amplitudes (Equation 14) also holds under not strictly
periodic flow conditions, an estimate of the wall shear
rate minimum can be obtained. First, the value of
dimensionless frequency W1, which characterizes the
flow conditions in front of the solitary wave, has to be
calculated. The value of X1 ’ 8, corresponding to the
frequency of the observed capillary waves (f ’ 53 Hz)
and to the probe characteristic time (t0 ’ 24 ms for
I1 ’ 28 lA), is obtained for the measured electrodiffu-
sion signal. Then Equation 14 provides for the criterion
of flow reversal achieving the condition eIIR=IR > 0:025
(AR ¼ 0.025 for the given value of W1 ¼ 8). This
condition is met in the present film flow experiment,
because the value of eIIR=IR ’ 0:058 corresponds to the
current ratio minimum depicted in Figure 12(b). Ac-
cording to Equation 14, this amplitude of the current
ratio signal is achieved at relatively high amplitudes of
wall shear rate fluctuation e_cc_cc=�_cc_cc ’ 2:32. Finally, consi-
dering the mean level of wall shear rate in the capillary
wave region (�_cc_cc ’ 573 s)1), the value of _ccmin ¼ �755 s)1
can be obtained for the wall shear rate minimum. We
suppose that this more negative estimate predicts the
strength of backflow in front of the measured solitary
wave well.

5. Conclusion

The calibration experiments carried out under fluctuat-
ing flow conditions provided a new insight into the
dynamic behaviour of two-segment electrodiffusion
probes. It was found that:

ii(i) The theoretical frequency response function for a
single wall probe can be approximated well by the
simple formula (Equation 8) that follows from this
similarity approximation to the corresponding
mass-transfer problem.

i(ii) The simple approximate model of the wall probe
dynamics (Equation 2) works well even when flow
fluctuations in the near-wall region are relatively
large and fast, but the flow still remains without a
reversal.

(iii) The amplitude of the current ratio signal measured
by the two-strip probe is proportional to the mag-
nitude of the wall shear rate fluctuations. The
simple relationship (Equation 14), which was ob-
tained for high-frequency fluctuations, is valid even
under flow reversal conditions in the near-wall re-
gion.

(iv) The two-strip electrodiffusion probe is able to de-
tect even a short-time flow reversal in the near-wall
region. The wall shear rate measurements, which
were done under wavy film flow conditions, confirm
the existence of a small backflow region located just
in front of the large solitary wave.
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